Metamath Proof Explorer


Theorem elrab2w

Description: Membership in a restricted class abstraction. This is to elrab2 what elab2gw is to elab2g . (Contributed by SN, 2-Sep-2024)

Ref Expression
Hypotheses elrab2w.1 x = y φ ψ
elrab2w.2 y = A ψ χ
elrab2w.3 C = x B | φ
Assertion elrab2w A C A B χ

Proof

Step Hyp Ref Expression
1 elrab2w.1 x = y φ ψ
2 elrab2w.2 y = A ψ χ
3 elrab2w.3 C = x B | φ
4 elex A C A V
5 elex A B A V
6 5 adantr A B χ A V
7 eleq1w x = y x B y B
8 7 1 anbi12d x = y x B φ y B ψ
9 eleq1 y = A y B A B
10 9 2 anbi12d y = A y B ψ A B χ
11 df-rab x B | φ = x | x B φ
12 3 11 eqtri C = x | x B φ
13 8 10 12 elab2gw A V A C A B χ
14 4 6 13 pm5.21nii A C A B χ