Metamath Proof Explorer


Theorem elrabiOLD

Description: Obsolete version of elrabi as of 5-Aug-2024. (Contributed by Alexander van der Vekens, 31-Dec-2017) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion elrabiOLD
|- ( A e. { x e. V | ph } -> A e. V )

Proof

Step Hyp Ref Expression
1 clelab
 |-  ( A e. { x | ( x e. V /\ ph ) } <-> E. x ( x = A /\ ( x e. V /\ ph ) ) )
2 eleq1
 |-  ( x = A -> ( x e. V <-> A e. V ) )
3 2 anbi1d
 |-  ( x = A -> ( ( x e. V /\ ph ) <-> ( A e. V /\ ph ) ) )
4 3 simprbda
 |-  ( ( x = A /\ ( x e. V /\ ph ) ) -> A e. V )
5 4 exlimiv
 |-  ( E. x ( x = A /\ ( x e. V /\ ph ) ) -> A e. V )
6 1 5 sylbi
 |-  ( A e. { x | ( x e. V /\ ph ) } -> A e. V )
7 df-rab
 |-  { x e. V | ph } = { x | ( x e. V /\ ph ) }
8 6 7 eleq2s
 |-  ( A e. { x e. V | ph } -> A e. V )