Description: Obsolete version of elrabi as of 5-Aug-2024. (Contributed by Alexander van der Vekens, 31-Dec-2017) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | elrabiOLD | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑉 ∣ 𝜑 } → 𝐴 ∈ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clelab | ⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ) ) | |
2 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑉 ↔ 𝐴 ∈ 𝑉 ) ) | |
3 | 2 | anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ↔ ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) ) ) |
4 | 3 | simprbda | ⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ) → 𝐴 ∈ 𝑉 ) |
5 | 4 | exlimiv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) ) → 𝐴 ∈ 𝑉 ) |
6 | 1 5 | sylbi | ⊢ ( 𝐴 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } → 𝐴 ∈ 𝑉 ) |
7 | df-rab | ⊢ { 𝑥 ∈ 𝑉 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝑉 ∧ 𝜑 ) } | |
8 | 6 7 | eleq2s | ⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑉 ∣ 𝜑 } → 𝐴 ∈ 𝑉 ) |