| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elrnmpt1sf.1 |
|- F/_ x C |
| 2 |
|
elrnmpt1sf.2 |
|- F = ( x e. A |-> B ) |
| 3 |
|
elrnmpt1sf.3 |
|- ( x = D -> B = C ) |
| 4 |
|
eqid |
|- C = C |
| 5 |
1 1
|
nfeq |
|- F/ x C = C |
| 6 |
3
|
eqeq2d |
|- ( x = D -> ( C = B <-> C = C ) ) |
| 7 |
5 6
|
rspce |
|- ( ( D e. A /\ C = C ) -> E. x e. A C = B ) |
| 8 |
4 7
|
mpan2 |
|- ( D e. A -> E. x e. A C = B ) |
| 9 |
1 2
|
elrnmptf |
|- ( C e. V -> ( C e. ran F <-> E. x e. A C = B ) ) |
| 10 |
9
|
biimparc |
|- ( ( E. x e. A C = B /\ C e. V ) -> C e. ran F ) |
| 11 |
8 10
|
sylan |
|- ( ( D e. A /\ C e. V ) -> C e. ran F ) |