Metamath Proof Explorer


Theorem elrnressn

Description: Element of the range of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion elrnressn
|- ( ( A e. V /\ B e. W ) -> ( B e. ran ( R |` { A } ) <-> A R B ) )

Proof

Step Hyp Ref Expression
1 elrnres
 |-  ( B e. W -> ( B e. ran ( R |` { A } ) <-> E. x e. { A } x R B ) )
2 breq1
 |-  ( x = A -> ( x R B <-> A R B ) )
3 2 rexsng
 |-  ( A e. V -> ( E. x e. { A } x R B <-> A R B ) )
4 1 3 sylan9bbr
 |-  ( ( A e. V /\ B e. W ) -> ( B e. ran ( R |` { A } ) <-> A R B ) )