Description: Deduce membership in the support of a function. (Contributed by Thierry Arnoux, 5-Oct-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elsuppfnd.1 | |- ( ph -> F Fn A ) |
|
elsuppfnd.2 | |- ( ph -> A e. V ) |
||
elsuppfnd.3 | |- ( ph -> Z e. W ) |
||
elsuppfnd.4 | |- ( ph -> X e. A ) |
||
elsuppfnd.5 | |- ( ph -> ( F ` X ) =/= Z ) |
||
Assertion | elsuppfnd | |- ( ph -> X e. ( F supp Z ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsuppfnd.1 | |- ( ph -> F Fn A ) |
|
2 | elsuppfnd.2 | |- ( ph -> A e. V ) |
|
3 | elsuppfnd.3 | |- ( ph -> Z e. W ) |
|
4 | elsuppfnd.4 | |- ( ph -> X e. A ) |
|
5 | elsuppfnd.5 | |- ( ph -> ( F ` X ) =/= Z ) |
|
6 | elsuppfn | |- ( ( F Fn A /\ A e. V /\ Z e. W ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) ) |
|
7 | 6 | biimpar | |- ( ( ( F Fn A /\ A e. V /\ Z e. W ) /\ ( X e. A /\ ( F ` X ) =/= Z ) ) -> X e. ( F supp Z ) ) |
8 | 1 2 3 4 5 7 | syl32anc | |- ( ph -> X e. ( F supp Z ) ) |