Metamath Proof Explorer


Theorem elsuppfnd

Description: Deduce membership in the support of a function. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses elsuppfnd.1
|- ( ph -> F Fn A )
elsuppfnd.2
|- ( ph -> A e. V )
elsuppfnd.3
|- ( ph -> Z e. W )
elsuppfnd.4
|- ( ph -> X e. A )
elsuppfnd.5
|- ( ph -> ( F ` X ) =/= Z )
Assertion elsuppfnd
|- ( ph -> X e. ( F supp Z ) )

Proof

Step Hyp Ref Expression
1 elsuppfnd.1
 |-  ( ph -> F Fn A )
2 elsuppfnd.2
 |-  ( ph -> A e. V )
3 elsuppfnd.3
 |-  ( ph -> Z e. W )
4 elsuppfnd.4
 |-  ( ph -> X e. A )
5 elsuppfnd.5
 |-  ( ph -> ( F ` X ) =/= Z )
6 elsuppfn
 |-  ( ( F Fn A /\ A e. V /\ Z e. W ) -> ( X e. ( F supp Z ) <-> ( X e. A /\ ( F ` X ) =/= Z ) ) )
7 6 biimpar
 |-  ( ( ( F Fn A /\ A e. V /\ Z e. W ) /\ ( X e. A /\ ( F ` X ) =/= Z ) ) -> X e. ( F supp Z ) )
8 1 2 3 4 5 7 syl32anc
 |-  ( ph -> X e. ( F supp Z ) )