Step |
Hyp |
Ref |
Expression |
1 |
|
fisuppov1.1 |
|- ( ph -> Z e. V ) |
2 |
|
fisuppov1.2 |
|- ( ph -> .0. e. X ) |
3 |
|
fisuppov1.3 |
|- ( ph -> A e. W ) |
4 |
|
fisuppov1.4 |
|- ( ph -> D C_ A ) |
5 |
|
fisuppov1.5 |
|- ( ( ph /\ x e. D ) -> B e. Y ) |
6 |
|
fisuppov1.6 |
|- ( ph -> F : A --> E ) |
7 |
|
fisuppov1.7 |
|- ( ph -> F finSupp .0. ) |
8 |
|
fisuppov1.8 |
|- ( ( ph /\ y e. Y ) -> ( .0. O y ) = Z ) |
9 |
3 4
|
ssexd |
|- ( ph -> D e. _V ) |
10 |
9
|
mptexd |
|- ( ph -> ( x e. D |-> ( ( F ` x ) O B ) ) e. _V ) |
11 |
|
funmpt |
|- Fun ( x e. D |-> ( ( F ` x ) O B ) ) |
12 |
11
|
a1i |
|- ( ph -> Fun ( x e. D |-> ( ( F ` x ) O B ) ) ) |
13 |
6 4
|
feqresmpt |
|- ( ph -> ( F |` D ) = ( x e. D |-> ( F ` x ) ) ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( F |` D ) supp .0. ) = ( ( x e. D |-> ( F ` x ) ) supp .0. ) ) |
15 |
6 3
|
fexd |
|- ( ph -> F e. _V ) |
16 |
|
ressuppss |
|- ( ( F e. _V /\ .0. e. X ) -> ( ( F |` D ) supp .0. ) C_ ( F supp .0. ) ) |
17 |
15 2 16
|
syl2anc |
|- ( ph -> ( ( F |` D ) supp .0. ) C_ ( F supp .0. ) ) |
18 |
14 17
|
eqsstrrd |
|- ( ph -> ( ( x e. D |-> ( F ` x ) ) supp .0. ) C_ ( F supp .0. ) ) |
19 |
|
fvexd |
|- ( ( ph /\ x e. D ) -> ( F ` x ) e. _V ) |
20 |
18 8 19 5 2
|
suppssov1 |
|- ( ph -> ( ( x e. D |-> ( ( F ` x ) O B ) ) supp Z ) C_ ( F supp .0. ) ) |
21 |
10 1 12 7 20
|
fsuppsssuppgd |
|- ( ph -> ( x e. D |-> ( ( F ` x ) O B ) ) finSupp Z ) |