Metamath Proof Explorer


Theorem fisuppov1

Description: Formula building theorem for finite support: operator with left annihilator. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses fisuppov1.1
|- ( ph -> Z e. V )
fisuppov1.2
|- ( ph -> .0. e. X )
fisuppov1.3
|- ( ph -> A e. W )
fisuppov1.4
|- ( ph -> D C_ A )
fisuppov1.5
|- ( ( ph /\ x e. D ) -> B e. Y )
fisuppov1.6
|- ( ph -> F : A --> E )
fisuppov1.7
|- ( ph -> F finSupp .0. )
fisuppov1.8
|- ( ( ph /\ y e. Y ) -> ( .0. O y ) = Z )
Assertion fisuppov1
|- ( ph -> ( x e. D |-> ( ( F ` x ) O B ) ) finSupp Z )

Proof

Step Hyp Ref Expression
1 fisuppov1.1
 |-  ( ph -> Z e. V )
2 fisuppov1.2
 |-  ( ph -> .0. e. X )
3 fisuppov1.3
 |-  ( ph -> A e. W )
4 fisuppov1.4
 |-  ( ph -> D C_ A )
5 fisuppov1.5
 |-  ( ( ph /\ x e. D ) -> B e. Y )
6 fisuppov1.6
 |-  ( ph -> F : A --> E )
7 fisuppov1.7
 |-  ( ph -> F finSupp .0. )
8 fisuppov1.8
 |-  ( ( ph /\ y e. Y ) -> ( .0. O y ) = Z )
9 3 4 ssexd
 |-  ( ph -> D e. _V )
10 9 mptexd
 |-  ( ph -> ( x e. D |-> ( ( F ` x ) O B ) ) e. _V )
11 funmpt
 |-  Fun ( x e. D |-> ( ( F ` x ) O B ) )
12 11 a1i
 |-  ( ph -> Fun ( x e. D |-> ( ( F ` x ) O B ) ) )
13 6 4 feqresmpt
 |-  ( ph -> ( F |` D ) = ( x e. D |-> ( F ` x ) ) )
14 13 oveq1d
 |-  ( ph -> ( ( F |` D ) supp .0. ) = ( ( x e. D |-> ( F ` x ) ) supp .0. ) )
15 6 3 fexd
 |-  ( ph -> F e. _V )
16 ressuppss
 |-  ( ( F e. _V /\ .0. e. X ) -> ( ( F |` D ) supp .0. ) C_ ( F supp .0. ) )
17 15 2 16 syl2anc
 |-  ( ph -> ( ( F |` D ) supp .0. ) C_ ( F supp .0. ) )
18 14 17 eqsstrrd
 |-  ( ph -> ( ( x e. D |-> ( F ` x ) ) supp .0. ) C_ ( F supp .0. ) )
19 fvexd
 |-  ( ( ph /\ x e. D ) -> ( F ` x ) e. _V )
20 18 8 19 5 2 suppssov1
 |-  ( ph -> ( ( x e. D |-> ( ( F ` x ) O B ) ) supp Z ) C_ ( F supp .0. ) )
21 10 1 12 7 20 fsuppsssuppgd
 |-  ( ph -> ( x e. D |-> ( ( F ` x ) O B ) ) finSupp Z )