Metamath Proof Explorer


Theorem suppun2

Description: The support of a union is the union of the supports. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses suppun2.1
|- ( ph -> F e. V )
suppun2.2
|- ( ph -> G e. W )
suppun2.3
|- ( ph -> Z e. X )
Assertion suppun2
|- ( ph -> ( ( F u. G ) supp Z ) = ( ( F supp Z ) u. ( G supp Z ) ) )

Proof

Step Hyp Ref Expression
1 suppun2.1
 |-  ( ph -> F e. V )
2 suppun2.2
 |-  ( ph -> G e. W )
3 suppun2.3
 |-  ( ph -> Z e. X )
4 cnvun
 |-  `' ( F u. G ) = ( `' F u. `' G )
5 4 imaeq1i
 |-  ( `' ( F u. G ) " ( _V \ { Z } ) ) = ( ( `' F u. `' G ) " ( _V \ { Z } ) )
6 imaundir
 |-  ( ( `' F u. `' G ) " ( _V \ { Z } ) ) = ( ( `' F " ( _V \ { Z } ) ) u. ( `' G " ( _V \ { Z } ) ) )
7 5 6 eqtri
 |-  ( `' ( F u. G ) " ( _V \ { Z } ) ) = ( ( `' F " ( _V \ { Z } ) ) u. ( `' G " ( _V \ { Z } ) ) )
8 1 2 unexd
 |-  ( ph -> ( F u. G ) e. _V )
9 suppimacnv
 |-  ( ( ( F u. G ) e. _V /\ Z e. X ) -> ( ( F u. G ) supp Z ) = ( `' ( F u. G ) " ( _V \ { Z } ) ) )
10 8 3 9 syl2anc
 |-  ( ph -> ( ( F u. G ) supp Z ) = ( `' ( F u. G ) " ( _V \ { Z } ) ) )
11 suppimacnv
 |-  ( ( F e. V /\ Z e. X ) -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
12 1 3 11 syl2anc
 |-  ( ph -> ( F supp Z ) = ( `' F " ( _V \ { Z } ) ) )
13 suppimacnv
 |-  ( ( G e. W /\ Z e. X ) -> ( G supp Z ) = ( `' G " ( _V \ { Z } ) ) )
14 2 3 13 syl2anc
 |-  ( ph -> ( G supp Z ) = ( `' G " ( _V \ { Z } ) ) )
15 12 14 uneq12d
 |-  ( ph -> ( ( F supp Z ) u. ( G supp Z ) ) = ( ( `' F " ( _V \ { Z } ) ) u. ( `' G " ( _V \ { Z } ) ) ) )
16 7 10 15 3eqtr4a
 |-  ( ph -> ( ( F u. G ) supp Z ) = ( ( F supp Z ) u. ( G supp Z ) ) )