Step |
Hyp |
Ref |
Expression |
1 |
|
fdifsupp.1 |
|- ( ph -> A e. V ) |
2 |
|
fdifsupp.2 |
|- ( ph -> Z e. W ) |
3 |
|
fdifsupp.3 |
|- ( ph -> F Fn A ) |
4 |
|
difssd |
|- ( ph -> ( A \ B ) C_ A ) |
5 |
3 4
|
fnssresd |
|- ( ph -> ( F |` ( A \ B ) ) Fn ( A \ B ) ) |
6 |
1
|
difexd |
|- ( ph -> ( A \ B ) e. _V ) |
7 |
|
elsuppfn |
|- ( ( ( F |` ( A \ B ) ) Fn ( A \ B ) /\ ( A \ B ) e. _V /\ Z e. W ) -> ( x e. ( ( F |` ( A \ B ) ) supp Z ) <-> ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) ) ) |
8 |
5 6 2 7
|
syl3anc |
|- ( ph -> ( x e. ( ( F |` ( A \ B ) ) supp Z ) <-> ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) ) ) |
9 |
|
eldif |
|- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
10 |
9
|
anbi1i |
|- ( ( x e. ( A \ B ) /\ ( F ` x ) =/= Z ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) |
11 |
10
|
a1i |
|- ( ph -> ( ( x e. ( A \ B ) /\ ( F ` x ) =/= Z ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) ) |
12 |
|
simpr |
|- ( ( ph /\ x e. ( A \ B ) ) -> x e. ( A \ B ) ) |
13 |
12
|
fvresd |
|- ( ( ph /\ x e. ( A \ B ) ) -> ( ( F |` ( A \ B ) ) ` x ) = ( F ` x ) ) |
14 |
13
|
neeq1d |
|- ( ( ph /\ x e. ( A \ B ) ) -> ( ( ( F |` ( A \ B ) ) ` x ) =/= Z <-> ( F ` x ) =/= Z ) ) |
15 |
14
|
pm5.32da |
|- ( ph -> ( ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) <-> ( x e. ( A \ B ) /\ ( F ` x ) =/= Z ) ) ) |
16 |
|
an32 |
|- ( ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) |
17 |
16
|
a1i |
|- ( ph -> ( ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) ) |
18 |
11 15 17
|
3bitr4d |
|- ( ph -> ( ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) <-> ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) ) ) |
19 |
|
eldif |
|- ( x e. ( ( F supp Z ) \ B ) <-> ( x e. ( F supp Z ) /\ -. x e. B ) ) |
20 |
1
|
elexd |
|- ( ph -> A e. _V ) |
21 |
|
elsuppfn |
|- ( ( F Fn A /\ A e. _V /\ Z e. W ) -> ( x e. ( F supp Z ) <-> ( x e. A /\ ( F ` x ) =/= Z ) ) ) |
22 |
3 20 2 21
|
syl3anc |
|- ( ph -> ( x e. ( F supp Z ) <-> ( x e. A /\ ( F ` x ) =/= Z ) ) ) |
23 |
22
|
anbi1d |
|- ( ph -> ( ( x e. ( F supp Z ) /\ -. x e. B ) <-> ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) ) ) |
24 |
19 23
|
bitr2id |
|- ( ph -> ( ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) <-> x e. ( ( F supp Z ) \ B ) ) ) |
25 |
8 18 24
|
3bitrd |
|- ( ph -> ( x e. ( ( F |` ( A \ B ) ) supp Z ) <-> x e. ( ( F supp Z ) \ B ) ) ) |
26 |
25
|
eqrdv |
|- ( ph -> ( ( F |` ( A \ B ) ) supp Z ) = ( ( F supp Z ) \ B ) ) |