| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fdifsupp.1 |
|- ( ph -> A e. V ) |
| 2 |
|
fdifsupp.2 |
|- ( ph -> Z e. W ) |
| 3 |
|
fdifsupp.3 |
|- ( ph -> F Fn A ) |
| 4 |
|
difssd |
|- ( ph -> ( A \ B ) C_ A ) |
| 5 |
3 4
|
fnssresd |
|- ( ph -> ( F |` ( A \ B ) ) Fn ( A \ B ) ) |
| 6 |
1
|
difexd |
|- ( ph -> ( A \ B ) e. _V ) |
| 7 |
|
elsuppfn |
|- ( ( ( F |` ( A \ B ) ) Fn ( A \ B ) /\ ( A \ B ) e. _V /\ Z e. W ) -> ( x e. ( ( F |` ( A \ B ) ) supp Z ) <-> ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) ) ) |
| 8 |
5 6 2 7
|
syl3anc |
|- ( ph -> ( x e. ( ( F |` ( A \ B ) ) supp Z ) <-> ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) ) ) |
| 9 |
|
eldif |
|- ( x e. ( A \ B ) <-> ( x e. A /\ -. x e. B ) ) |
| 10 |
9
|
anbi1i |
|- ( ( x e. ( A \ B ) /\ ( F ` x ) =/= Z ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) |
| 11 |
10
|
a1i |
|- ( ph -> ( ( x e. ( A \ B ) /\ ( F ` x ) =/= Z ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) ) |
| 12 |
|
simpr |
|- ( ( ph /\ x e. ( A \ B ) ) -> x e. ( A \ B ) ) |
| 13 |
12
|
fvresd |
|- ( ( ph /\ x e. ( A \ B ) ) -> ( ( F |` ( A \ B ) ) ` x ) = ( F ` x ) ) |
| 14 |
13
|
neeq1d |
|- ( ( ph /\ x e. ( A \ B ) ) -> ( ( ( F |` ( A \ B ) ) ` x ) =/= Z <-> ( F ` x ) =/= Z ) ) |
| 15 |
14
|
pm5.32da |
|- ( ph -> ( ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) <-> ( x e. ( A \ B ) /\ ( F ` x ) =/= Z ) ) ) |
| 16 |
|
an32 |
|- ( ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) |
| 17 |
16
|
a1i |
|- ( ph -> ( ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) <-> ( ( x e. A /\ -. x e. B ) /\ ( F ` x ) =/= Z ) ) ) |
| 18 |
11 15 17
|
3bitr4d |
|- ( ph -> ( ( x e. ( A \ B ) /\ ( ( F |` ( A \ B ) ) ` x ) =/= Z ) <-> ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) ) ) |
| 19 |
|
eldif |
|- ( x e. ( ( F supp Z ) \ B ) <-> ( x e. ( F supp Z ) /\ -. x e. B ) ) |
| 20 |
1
|
elexd |
|- ( ph -> A e. _V ) |
| 21 |
|
elsuppfn |
|- ( ( F Fn A /\ A e. _V /\ Z e. W ) -> ( x e. ( F supp Z ) <-> ( x e. A /\ ( F ` x ) =/= Z ) ) ) |
| 22 |
3 20 2 21
|
syl3anc |
|- ( ph -> ( x e. ( F supp Z ) <-> ( x e. A /\ ( F ` x ) =/= Z ) ) ) |
| 23 |
22
|
anbi1d |
|- ( ph -> ( ( x e. ( F supp Z ) /\ -. x e. B ) <-> ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) ) ) |
| 24 |
19 23
|
bitr2id |
|- ( ph -> ( ( ( x e. A /\ ( F ` x ) =/= Z ) /\ -. x e. B ) <-> x e. ( ( F supp Z ) \ B ) ) ) |
| 25 |
8 18 24
|
3bitrd |
|- ( ph -> ( x e. ( ( F |` ( A \ B ) ) supp Z ) <-> x e. ( ( F supp Z ) \ B ) ) ) |
| 26 |
25
|
eqrdv |
|- ( ph -> ( ( F |` ( A \ B ) ) supp Z ) = ( ( F supp Z ) \ B ) ) |