Metamath Proof Explorer


Theorem elunant

Description: A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023)

Ref Expression
Assertion elunant
|- ( ( C e. ( A u. B ) -> ph ) <-> ( ( C e. A -> ph ) /\ ( C e. B -> ph ) ) )

Proof

Step Hyp Ref Expression
1 elun
 |-  ( C e. ( A u. B ) <-> ( C e. A \/ C e. B ) )
2 1 imbi1i
 |-  ( ( C e. ( A u. B ) -> ph ) <-> ( ( C e. A \/ C e. B ) -> ph ) )
3 jaob
 |-  ( ( ( C e. A \/ C e. B ) -> ph ) <-> ( ( C e. A -> ph ) /\ ( C e. B -> ph ) ) )
4 2 3 bitri
 |-  ( ( C e. ( A u. B ) -> ph ) <-> ( ( C e. A -> ph ) /\ ( C e. B -> ph ) ) )