Metamath Proof Explorer


Theorem elunitge0

Description: An element of the closed unit interval is positive. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 20-Dec-2016)

Ref Expression
Assertion elunitge0
|- ( A e. ( 0 [,] 1 ) -> 0 <_ A )

Proof

Step Hyp Ref Expression
1 elicc01
 |-  ( A e. ( 0 [,] 1 ) <-> ( A e. RR /\ 0 <_ A /\ A <_ 1 ) )
2 1 simp2bi
 |-  ( A e. ( 0 [,] 1 ) -> 0 <_ A )