Metamath Proof Explorer


Theorem unitssxrge0

Description: The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016)

Ref Expression
Assertion unitssxrge0
|- ( 0 [,] 1 ) C_ ( 0 [,] +oo )

Proof

Step Hyp Ref Expression
1 0e0iccpnf
 |-  0 e. ( 0 [,] +oo )
2 1xr
 |-  1 e. RR*
3 0le1
 |-  0 <_ 1
4 pnfge
 |-  ( 1 e. RR* -> 1 <_ +oo )
5 2 4 ax-mp
 |-  1 <_ +oo
6 0xr
 |-  0 e. RR*
7 pnfxr
 |-  +oo e. RR*
8 elicc1
 |-  ( ( 0 e. RR* /\ +oo e. RR* ) -> ( 1 e. ( 0 [,] +oo ) <-> ( 1 e. RR* /\ 0 <_ 1 /\ 1 <_ +oo ) ) )
9 6 7 8 mp2an
 |-  ( 1 e. ( 0 [,] +oo ) <-> ( 1 e. RR* /\ 0 <_ 1 /\ 1 <_ +oo ) )
10 2 3 5 9 mpbir3an
 |-  1 e. ( 0 [,] +oo )
11 iccss2
 |-  ( ( 0 e. ( 0 [,] +oo ) /\ 1 e. ( 0 [,] +oo ) ) -> ( 0 [,] 1 ) C_ ( 0 [,] +oo ) )
12 1 10 11 mp2an
 |-  ( 0 [,] 1 ) C_ ( 0 [,] +oo )