Metamath Proof Explorer


Theorem elvv

Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994)

Ref Expression
Assertion elvv
|- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. )

Proof

Step Hyp Ref Expression
1 elxp
 |-  ( A e. ( _V X. _V ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. _V /\ y e. _V ) ) )
2 vex
 |-  x e. _V
3 vex
 |-  y e. _V
4 2 3 pm3.2i
 |-  ( x e. _V /\ y e. _V )
5 4 biantru
 |-  ( A = <. x , y >. <-> ( A = <. x , y >. /\ ( x e. _V /\ y e. _V ) ) )
6 5 2exbii
 |-  ( E. x E. y A = <. x , y >. <-> E. x E. y ( A = <. x , y >. /\ ( x e. _V /\ y e. _V ) ) )
7 1 6 bitr4i
 |-  ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. )