Description: Membership in universal class of ordered pairs. (Contributed by NM, 4-Jul-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | elvv | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp | |- ( A e. ( _V X. _V ) <-> E. x E. y ( A = <. x , y >. /\ ( x e. _V /\ y e. _V ) ) ) |
|
2 | vex | |- x e. _V |
|
3 | vex | |- y e. _V |
|
4 | 2 3 | pm3.2i | |- ( x e. _V /\ y e. _V ) |
5 | 4 | biantru | |- ( A = <. x , y >. <-> ( A = <. x , y >. /\ ( x e. _V /\ y e. _V ) ) ) |
6 | 5 | 2exbii | |- ( E. x E. y A = <. x , y >. <-> E. x E. y ( A = <. x , y >. /\ ( x e. _V /\ y e. _V ) ) ) |
7 | 1 6 | bitr4i | |- ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. ) |