Metamath Proof Explorer


Theorem eqbrriv

Description: Inference from extensionality principle for relations. (Contributed by NM, 12-Dec-2006)

Ref Expression
Hypotheses eqbrriv.1
|- Rel A
eqbrriv.2
|- Rel B
eqbrriv.3
|- ( x A y <-> x B y )
Assertion eqbrriv
|- A = B

Proof

Step Hyp Ref Expression
1 eqbrriv.1
 |-  Rel A
2 eqbrriv.2
 |-  Rel B
3 eqbrriv.3
 |-  ( x A y <-> x B y )
4 df-br
 |-  ( x A y <-> <. x , y >. e. A )
5 df-br
 |-  ( x B y <-> <. x , y >. e. B )
6 3 4 5 3bitr3i
 |-  ( <. x , y >. e. A <-> <. x , y >. e. B )
7 1 2 6 eqrelriiv
 |-  A = B