Metamath Proof Explorer


Theorem eqvreldisj4

Description: Intersection with the converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020) (Revised by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvreldisj4
|- ( EqvRel R -> Disj ( S i^i ( `' _E |` ( B /. R ) ) ) )

Proof

Step Hyp Ref Expression
1 eqvreldisj3
 |-  ( EqvRel R -> Disj ( `' _E |` ( B /. R ) ) )
2 disjimin
 |-  ( Disj ( `' _E |` ( B /. R ) ) -> Disj ( S i^i ( `' _E |` ( B /. R ) ) ) )
3 1 2 syl
 |-  ( EqvRel R -> Disj ( S i^i ( `' _E |` ( B /. R ) ) ) )