Metamath Proof Explorer


Theorem eqvreldisj4

Description: Intersection with the converse epsilon relation restricted to the quotient set of an equivalence relation is disjoint. (Contributed by Peter Mazsa, 30-May-2020) (Revised by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvreldisj4 ( EqvRel 𝑅 → Disj ( 𝑆 ∩ ( E ↾ ( 𝐵 / 𝑅 ) ) ) )

Proof

Step Hyp Ref Expression
1 eqvreldisj3 ( EqvRel 𝑅 → Disj ( E ↾ ( 𝐵 / 𝑅 ) ) )
2 disjimin ( Disj ( E ↾ ( 𝐵 / 𝑅 ) ) → Disj ( 𝑆 ∩ ( E ↾ ( 𝐵 / 𝑅 ) ) ) )
3 1 2 syl ( EqvRel 𝑅 → Disj ( 𝑆 ∩ ( E ↾ ( 𝐵 / 𝑅 ) ) ) )