Metamath Proof Explorer


Theorem eqvreldisj3

Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 ). (Contributed by Mario Carneiro, 10-Dec-2016) (Revised by Peter Mazsa, 20-Jun-2019) (Revised by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion eqvreldisj3 ( EqvRel 𝑅 → Disj ( E ↾ ( 𝐴 / 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 eqvreldisj2 ( EqvRel 𝑅 → ElDisj ( 𝐴 / 𝑅 ) )
2 df-eldisj ( ElDisj ( 𝐴 / 𝑅 ) ↔ Disj ( E ↾ ( 𝐴 / 𝑅 ) ) )
3 1 2 sylib ( EqvRel 𝑅 → Disj ( E ↾ ( 𝐴 / 𝑅 ) ) )