Metamath Proof Explorer


Theorem eqvrelqseqdisj4

Description: Lemma for petincnvepres2 . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion eqvrelqseqdisj4
|- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( S i^i ( `' _E |` A ) ) )

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj3
 |-  ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` A ) )
2 disjimin
 |-  ( Disj ( `' _E |` A ) -> Disj ( S i^i ( `' _E |` A ) ) )
3 1 2 syl
 |-  ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( S i^i ( `' _E |` A ) ) )