Description: Lemma for petincnvepres2 . (Contributed by Peter Mazsa, 31-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvrelqseqdisj4 | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( S i^i ( `' _E |` A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj3 | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` A ) ) |
|
2 | disjimin | |- ( Disj ( `' _E |` A ) -> Disj ( S i^i ( `' _E |` A ) ) ) |
|
3 | 1 2 | syl | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( S i^i ( `' _E |` A ) ) ) |