Description: Lemma for petincnvepres2 . (Contributed by Peter Mazsa, 31-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqvrelqseqdisj4 | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( S i^i ( `' _E |` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvrelqseqdisj3 | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( `' _E |` A ) ) |
|
| 2 | disjimin | |- ( Disj ( `' _E |` A ) -> Disj ( S i^i ( `' _E |` A ) ) ) |
|
| 3 | 1 2 | syl | |- ( ( EqvRel R /\ ( B /. R ) = A ) -> Disj ( S i^i ( `' _E |` A ) ) ) |