Description: A partition-equivalence theorem with intersection and general R . (Contributed by Peter Mazsa, 31-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | petincnvepres2 | |- ( ( Disj ( R i^i ( `' _E |` A ) ) /\ ( dom ( R i^i ( `' _E |` A ) ) /. ( R i^i ( `' _E |` A ) ) ) = A ) <-> ( EqvRel ,~ ( R i^i ( `' _E |` A ) ) /\ ( dom ,~ ( R i^i ( `' _E |` A ) ) /. ,~ ( R i^i ( `' _E |` A ) ) ) = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj4 | |- ( ( EqvRel ,~ ( R i^i ( `' _E |` A ) ) /\ ( dom ,~ ( R i^i ( `' _E |` A ) ) /. ,~ ( R i^i ( `' _E |` A ) ) ) = A ) -> Disj ( R i^i ( `' _E |` A ) ) ) |
|
2 | 1 | petlem | |- ( ( Disj ( R i^i ( `' _E |` A ) ) /\ ( dom ( R i^i ( `' _E |` A ) ) /. ( R i^i ( `' _E |` A ) ) ) = A ) <-> ( EqvRel ,~ ( R i^i ( `' _E |` A ) ) /\ ( dom ,~ ( R i^i ( `' _E |` A ) ) /. ,~ ( R i^i ( `' _E |` A ) ) ) = A ) ) |