Metamath Proof Explorer


Theorem petincnvepres2

Description: A partition-equivalence theorem with intersection and general R . (Contributed by Peter Mazsa, 31-Dec-2021)

Ref Expression
Assertion petincnvepres2 DisjRE-1AdomRE-1A/RE-1A=AEqvRelRE-1AdomRE-1A/RE-1A=A

Proof

Step Hyp Ref Expression
1 eqvrelqseqdisj4 EqvRelRE-1AdomRE-1A/RE-1A=ADisjRE-1A
2 1 petlem DisjRE-1AdomRE-1A/RE-1A=AEqvRelRE-1AdomRE-1A/RE-1A=A