Metamath Proof Explorer


Theorem petlem

Description: If you can prove that the equivalence of cosets on their natural domain implies disjointness (e.g. eqvrelqseqdisj5 ), or converse function (cf. dfdisjALTV ), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. Lemma for the Partition Equivalence Theorem pet2 . (Contributed by Peter Mazsa, 18-Sep-2021)

Ref Expression
Hypothesis petlem.1 EqvRelRdomR/R=ADisjR
Assertion petlem DisjRdomR/R=AEqvRelRdomR/R=A

Proof

Step Hyp Ref Expression
1 petlem.1 EqvRelRdomR/R=ADisjR
2 partim2 DisjRdomR/R=AEqvRelRdomR/R=A
3 simpr EqvRelRdomR/R=AdomR/R=A
4 disjdmqseq DisjRdomR/R=AdomR/R=A
5 4 pm5.32i DisjRdomR/R=ADisjRdomR/R=A
6 1 3 5 sylanbrc EqvRelRdomR/R=ADisjRdomR/R=A
7 2 6 impbii DisjRdomR/R=AEqvRelRdomR/R=A