| Step |
Hyp |
Ref |
Expression |
| 1 |
|
petlem.1 |
|- ( ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) -> Disj R ) |
| 2 |
|
partim2 |
|- ( ( Disj R /\ ( dom R /. R ) = A ) -> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) ) |
| 3 |
|
simpr |
|- ( ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) -> ( dom ,~ R /. ,~ R ) = A ) |
| 4 |
|
disjdmqseq |
|- ( Disj R -> ( ( dom R /. R ) = A <-> ( dom ,~ R /. ,~ R ) = A ) ) |
| 5 |
4
|
pm5.32i |
|- ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( Disj R /\ ( dom ,~ R /. ,~ R ) = A ) ) |
| 6 |
1 3 5
|
sylanbrc |
|- ( ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) -> ( Disj R /\ ( dom R /. R ) = A ) ) |
| 7 |
2 6
|
impbii |
|- ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) ) |