Description: Partition-Equivalence Theorem, with general R . This theorem (together with pet and pets ) is the main result of my investigation into set theory, see the comment of pet . (Contributed by Peter Mazsa, 24-May-2021) (Revised by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | pet2 | |- ( ( Disj ( R |X. ( `' _E |` A ) ) /\ ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) = A ) <-> ( EqvRel ,~ ( R |X. ( `' _E |` A ) ) /\ ( dom ,~ ( R |X. ( `' _E |` A ) ) /. ,~ ( R |X. ( `' _E |` A ) ) ) = A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj5 | |- ( ( EqvRel ,~ ( R |X. ( `' _E |` A ) ) /\ ( dom ,~ ( R |X. ( `' _E |` A ) ) /. ,~ ( R |X. ( `' _E |` A ) ) ) = A ) -> Disj ( R |X. ( `' _E |` A ) ) ) |
|
2 | 1 | petlem | |- ( ( Disj ( R |X. ( `' _E |` A ) ) /\ ( dom ( R |X. ( `' _E |` A ) ) /. ( R |X. ( `' _E |` A ) ) ) = A ) <-> ( EqvRel ,~ ( R |X. ( `' _E |` A ) ) /\ ( dom ,~ ( R |X. ( `' _E |` A ) ) /. ,~ ( R |X. ( `' _E |` A ) ) ) = A ) ) |