Metamath Proof Explorer


Theorem petlemi

Description: If you can prove disjointness (e.g. disjALTV0 , disjALTVid , disjALTVidres , disjALTVxrnidres , search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV ), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021)

Ref Expression
Hypothesis petlemi.1
|- Disj R
Assertion petlemi
|- ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) )

Proof

Step Hyp Ref Expression
1 petlemi.1
 |-  Disj R
2 1 a1i
 |-  ( ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) -> Disj R )
3 2 petlem
 |-  ( ( Disj R /\ ( dom R /. R ) = A ) <-> ( EqvRel ,~ R /\ ( dom ,~ R /. ,~ R ) = A ) )