Metamath Proof Explorer


Theorem disjALTV0

Description: The null class is disjoint. (Contributed by Peter Mazsa, 27-Sep-2021)

Ref Expression
Assertion disjALTV0
|- Disj (/)

Proof

Step Hyp Ref Expression
1 br0
 |-  -. u (/) x
2 1 nex
 |-  -. E. u u (/) x
3 nexmo
 |-  ( -. E. u u (/) x -> E* u u (/) x )
4 2 3 ax-mp
 |-  E* u u (/) x
5 4 ax-gen
 |-  A. x E* u u (/) x
6 rel0
 |-  Rel (/)
7 dfdisjALTV4
 |-  ( Disj (/) <-> ( A. x E* u u (/) x /\ Rel (/) ) )
8 5 6 7 mpbir2an
 |-  Disj (/)