Metamath Proof Explorer


Theorem petlemi

Description: If you can prove disjointness (e.g. disjALTV0 , disjALTVid , disjALTVidres , disjALTVxrnidres , search for theorems containing the ' |- Disj ' string), or the same with converse function (cf. dfdisjALTV ), then disjointness, and equivalence of cosets, both on their natural domain, are equivalent. (Contributed by Peter Mazsa, 18-Sep-2021)

Ref Expression
Hypothesis petlemi.1 DisjR
Assertion petlemi DisjRdomR/R=AEqvRelRdomR/R=A

Proof

Step Hyp Ref Expression
1 petlemi.1 DisjR
2 1 a1i EqvRelRdomR/R=ADisjR
3 2 petlem DisjRdomR/R=AEqvRelRdomR/R=A