Metamath Proof Explorer


Theorem petincnvepres

Description: The shortest form of a partition-equivalence theorem with intersection and general R . Cf. br1cossincnvepres . Cf. pet . (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion petincnvepres R E -1 A Part A R E -1 A ErALTV A

Proof

Step Hyp Ref Expression
1 petincnvepres2 Disj R E -1 A dom R E -1 A / R E -1 A = A EqvRel R E -1 A dom R E -1 A / R E -1 A = A
2 dfpart2 R E -1 A Part A Disj R E -1 A dom R E -1 A / R E -1 A = A
3 dferALTV2 R E -1 A ErALTV A EqvRel R E -1 A dom R E -1 A / R E -1 A = A
4 1 2 3 3bitr4i R E -1 A Part A R E -1 A ErALTV A