Metamath Proof Explorer


Theorem dferALTV2

Description: Equivalence relation with natural domain predicate, see the comment of df-ers . (Contributed by Peter Mazsa, 26-Jun-2021) (Revised by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion dferALTV2 R ErALTV A EqvRel R dom R / R = A

Proof

Step Hyp Ref Expression
1 df-erALTV R ErALTV A EqvRel R R DomainQs A
2 df-dmqs R DomainQs A dom R / R = A
3 2 anbi2i EqvRel R R DomainQs A EqvRel R dom R / R = A
4 1 3 bitri R ErALTV A EqvRel R dom R / R = A