Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Equivalence relations on domain quotients
dferALTV2
Metamath Proof Explorer
Description: Equivalence relation with natural domain predicate, see the comment of
df-ers . (Contributed by Peter Mazsa , 26-Jun-2021) (Revised by Peter
Mazsa , 30-Aug-2021)
Ref
Expression
Assertion
dferALTV2
⊢ R ErALTV A ↔ EqvRel R ∧ dom ⁡ R / R = A
Proof
Step
Hyp
Ref
Expression
1
df-erALTV
⊢ R ErALTV A ↔ EqvRel R ∧ R DomainQs A
2
df-dmqs
⊢ R DomainQs A ↔ dom ⁡ R / R = A
3
2
anbi2i
⊢ EqvRel R ∧ R DomainQs A ↔ EqvRel R ∧ dom ⁡ R / R = A
4
1 3
bitri
⊢ R ErALTV A ↔ EqvRel R ∧ dom ⁡ R / R = A