Metamath Proof Explorer


Definition df-erALTV

Description: Equivalence relation with natural domain predicate, see also the comment of df-ers . Alternate definition is dferALTV2 . Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when A and R are sets, see brerser . (Contributed by Peter Mazsa, 12-Aug-2021)

Ref Expression
Assertion df-erALTV R ErALTV A EqvRel R R DomainQs A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 1 0 werALTV wff R ErALTV A
3 0 weqvrel wff EqvRel R
4 1 0 wdmqs wff R DomainQs A
5 3 4 wa wff EqvRel R R DomainQs A
6 2 5 wb wff R ErALTV A EqvRel R R DomainQs A