Metamath Proof Explorer


Definition df-erALTV

Description: Equivalence relation with natural domain predicate, see also the comment of df-ers . Alternate definition is dferALTV2 . Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when A and R are sets, see brerser . (Contributed by Peter Mazsa, 12-Aug-2021)

Ref Expression
Assertion df-erALTV ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 1 0 werALTV 𝑅 ErALTV 𝐴
3 0 weqvrel EqvRel 𝑅
4 1 0 wdmqs 𝑅 DomainQs 𝐴
5 3 4 wa ( EqvRel 𝑅𝑅 DomainQs 𝐴 )
6 2 5 wb ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴 ) )