Metamath Proof Explorer


Theorem dferALTV2

Description: Equivalence relation with natural domain predicate, see the comment of df-ers . (Contributed by Peter Mazsa, 26-Jun-2021) (Revised by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion dferALTV2 ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-erALTV ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴 ) )
2 df-dmqs ( 𝑅 DomainQs 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 )
3 2 anbi2i ( ( EqvRel 𝑅𝑅 DomainQs 𝐴 ) ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
4 1 3 bitri ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )