Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Equivalence relations on domain quotients
dferALTV2
Metamath Proof Explorer
Description: Equivalence relation with natural domain predicate, see the comment of
df-ers . (Contributed by Peter Mazsa , 26-Jun-2021) (Revised by Peter
Mazsa , 30-Aug-2021)
Ref
Expression
Assertion
dferALTV2
⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
Proof
Step
Hyp
Ref
Expression
1
df-erALTV
⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴 ) )
2
df-dmqs
⊢ ( 𝑅 DomainQs 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 )
3
2
anbi2i
⊢ ( ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
4
1 3
bitri
⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )