Metamath Proof Explorer


Theorem dferALTV2

Description: Equivalence relation with natural domain predicate, see the comment of df-ers . (Contributed by Peter Mazsa, 26-Jun-2021) (Revised by Peter Mazsa, 30-Aug-2021)

Ref Expression
Assertion dferALTV2
|- ( R ErALTV A <-> ( EqvRel R /\ ( dom R /. R ) = A ) )

Proof

Step Hyp Ref Expression
1 df-erALTV
 |-  ( R ErALTV A <-> ( EqvRel R /\ R DomainQs A ) )
2 df-dmqs
 |-  ( R DomainQs A <-> ( dom R /. R ) = A )
3 2 anbi2i
 |-  ( ( EqvRel R /\ R DomainQs A ) <-> ( EqvRel R /\ ( dom R /. R ) = A ) )
4 1 3 bitri
 |-  ( R ErALTV A <-> ( EqvRel R /\ ( dom R /. R ) = A ) )