Description: Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | erALTVeq1 | |- ( R = S -> ( R ErALTV A <-> S ErALTV A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreleq | |- ( R = S -> ( EqvRel R <-> EqvRel S ) ) |
|
2 | dmqseqeq1 | |- ( R = S -> ( ( dom R /. R ) = A <-> ( dom S /. S ) = A ) ) |
|
3 | 1 2 | anbi12d | |- ( R = S -> ( ( EqvRel R /\ ( dom R /. R ) = A ) <-> ( EqvRel S /\ ( dom S /. S ) = A ) ) ) |
4 | dferALTV2 | |- ( R ErALTV A <-> ( EqvRel R /\ ( dom R /. R ) = A ) ) |
|
5 | dferALTV2 | |- ( S ErALTV A <-> ( EqvRel S /\ ( dom S /. S ) = A ) ) |
|
6 | 3 4 5 | 3bitr4g | |- ( R = S -> ( R ErALTV A <-> S ErALTV A ) ) |