Description: Equality theorem for equivalence relation on domain quotient. (Contributed by Peter Mazsa, 25-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | erALTVeq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreleq | ⊢ ( 𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) | |
2 | dmqseqeq1 | ⊢ ( 𝑅 = 𝑆 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) | |
3 | 1 2 | anbi12d | ⊢ ( 𝑅 = 𝑆 → ( ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( EqvRel 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) ) |
4 | dferALTV2 | ⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) | |
5 | dferALTV2 | ⊢ ( 𝑆 ErALTV 𝐴 ↔ ( EqvRel 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴 ) ) |