Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvreleq | ⊢ ( 𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refreleq | ⊢ ( 𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆 ) ) | |
2 | symreleq | ⊢ ( 𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆 ) ) | |
3 | trreleq | ⊢ ( 𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆 ) ) | |
4 | 1 2 3 | 3anbi123d | ⊢ ( 𝑅 = 𝑆 → ( ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆 ) ) ) |
5 | df-eqvrel | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) ) | |
6 | df-eqvrel | ⊢ ( EqvRel 𝑆 ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆 ) ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) ) |