Metamath Proof Explorer


Theorem eqvreleq

Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eqvreleq ( 𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) )

Proof

Step Hyp Ref Expression
1 refreleq ( 𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆 ) )
2 symreleq ( 𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆 ) )
3 trreleq ( 𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆 ) )
4 1 2 3 3anbi123d ( 𝑅 = 𝑆 → ( ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆 ) ) )
5 df-eqvrel ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅 ) )
6 df-eqvrel ( EqvRel 𝑆 ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆 ) )
7 4 5 6 3bitr4g ( 𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆 ) )