Step |
Hyp |
Ref |
Expression |
1 |
|
dmeq |
⊢ ( 𝑅 = 𝑆 → dom 𝑅 = dom 𝑆 ) |
2 |
|
rneq |
⊢ ( 𝑅 = 𝑆 → ran 𝑅 = ran 𝑆 ) |
3 |
1 2
|
xpeq12d |
⊢ ( 𝑅 = 𝑆 → ( dom 𝑅 × ran 𝑅 ) = ( dom 𝑆 × ran 𝑆 ) ) |
4 |
3
|
ineq2d |
⊢ ( 𝑅 = 𝑆 → ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) = ( I ∩ ( dom 𝑆 × ran 𝑆 ) ) ) |
5 |
|
id |
⊢ ( 𝑅 = 𝑆 → 𝑅 = 𝑆 ) |
6 |
4 5
|
sseq12d |
⊢ ( 𝑅 = 𝑆 → ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ↔ ( I ∩ ( dom 𝑆 × ran 𝑆 ) ) ⊆ 𝑆 ) ) |
7 |
|
releq |
⊢ ( 𝑅 = 𝑆 → ( Rel 𝑅 ↔ Rel 𝑆 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝑅 = 𝑆 → ( ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ↔ ( ( I ∩ ( dom 𝑆 × ran 𝑆 ) ) ⊆ 𝑆 ∧ Rel 𝑆 ) ) ) |
9 |
|
dfrefrel2 |
⊢ ( RefRel 𝑅 ↔ ( ( I ∩ ( dom 𝑅 × ran 𝑅 ) ) ⊆ 𝑅 ∧ Rel 𝑅 ) ) |
10 |
|
dfrefrel2 |
⊢ ( RefRel 𝑆 ↔ ( ( I ∩ ( dom 𝑆 × ran 𝑆 ) ) ⊆ 𝑆 ∧ Rel 𝑆 ) ) |
11 |
8 9 10
|
3bitr4g |
⊢ ( 𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆 ) ) |