Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refrelid | ⊢ RefRel I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | ⊢ ( I ∩ ( dom I × ran I ) ) ⊆ ( I ∩ ( dom I × ran I ) ) | |
| 2 | reli | ⊢ Rel I | |
| 3 | df-refrel | ⊢ ( RefRel I ↔ ( ( I ∩ ( dom I × ran I ) ) ⊆ ( I ∩ ( dom I × ran I ) ) ∧ Rel I ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ RefRel I |