Metamath Proof Explorer


Theorem refrelid

Description: Identity relation is reflexive. (Contributed by Peter Mazsa, 25-Jul-2021)

Ref Expression
Assertion refrelid RefRel I

Proof

Step Hyp Ref Expression
1 ssid ( I ∩ ( dom I × ran I ) ) ⊆ ( I ∩ ( dom I × ran I ) )
2 reli Rel I
3 df-refrel ( RefRel I ↔ ( ( I ∩ ( dom I × ran I ) ) ⊆ ( I ∩ ( dom I × ran I ) ) ∧ Rel I ) )
4 1 2 3 mpbir2an RefRel I