Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eqvreleq | |- ( R = S -> ( EqvRel R <-> EqvRel S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | refreleq | |- ( R = S -> ( RefRel R <-> RefRel S ) ) |
|
2 | symreleq | |- ( R = S -> ( SymRel R <-> SymRel S ) ) |
|
3 | trreleq | |- ( R = S -> ( TrRel R <-> TrRel S ) ) |
|
4 | 1 2 3 | 3anbi123d | |- ( R = S -> ( ( RefRel R /\ SymRel R /\ TrRel R ) <-> ( RefRel S /\ SymRel S /\ TrRel S ) ) ) |
5 | df-eqvrel | |- ( EqvRel R <-> ( RefRel R /\ SymRel R /\ TrRel R ) ) |
|
6 | df-eqvrel | |- ( EqvRel S <-> ( RefRel S /\ SymRel S /\ TrRel S ) ) |
|
7 | 4 5 6 | 3bitr4g | |- ( R = S -> ( EqvRel R <-> EqvRel S ) ) |