Metamath Proof Explorer


Theorem brerser

Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when A and R are sets. (Contributed by Peter Mazsa, 25-Aug-2021)

Ref Expression
Assertion brerser ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Ers 𝐴𝑅 ErALTV 𝐴 ) )

Proof

Step Hyp Ref Expression
1 brers ( 𝐴𝑉 → ( 𝑅 Ers 𝐴 ↔ ( 𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴 ) ) )
2 1 adantr ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Ers 𝐴 ↔ ( 𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴 ) ) )
3 eleqvrelsrel ( 𝑅𝑊 → ( 𝑅 ∈ EqvRels ↔ EqvRel 𝑅 ) )
4 3 adantl ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 ∈ EqvRels ↔ EqvRel 𝑅 ) )
5 brdmqssqs ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 DomainQss 𝐴𝑅 DomainQs 𝐴 ) )
6 4 5 anbi12d ( ( 𝐴𝑉𝑅𝑊 ) → ( ( 𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴 ) ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴 ) ) )
7 df-erALTV ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴 ) )
8 6 7 bitr4di ( ( 𝐴𝑉𝑅𝑊 ) → ( ( 𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴 ) ↔ 𝑅 ErALTV 𝐴 ) )
9 2 8 bitrd ( ( 𝐴𝑉𝑅𝑊 ) → ( 𝑅 Ers 𝐴𝑅 ErALTV 𝐴 ) )