Metamath Proof Explorer


Theorem brerser

Description: Binary equivalence relation with natural domain and the equivalence relation with natural domain predicate are the same when A and R are sets. (Contributed by Peter Mazsa, 25-Aug-2021)

Ref Expression
Assertion brerser A V R W R Ers A R ErALTV A

Proof

Step Hyp Ref Expression
1 brers A V R Ers A R EqvRels R DomainQss A
2 1 adantr A V R W R Ers A R EqvRels R DomainQss A
3 eleqvrelsrel R W R EqvRels EqvRel R
4 3 adantl A V R W R EqvRels EqvRel R
5 brdmqssqs A V R W R DomainQss A R DomainQs A
6 4 5 anbi12d A V R W R EqvRels R DomainQss A EqvRel R R DomainQs A
7 df-erALTV R ErALTV A EqvRel R R DomainQs A
8 6 7 bitr4di A V R W R EqvRels R DomainQss A R ErALTV A
9 2 8 bitrd A V R W R Ers A R ErALTV A