Metamath Proof Explorer


Theorem brers

Description: Binary equivalence relation with natural domain, see the comment of df-ers . (Contributed by Peter Mazsa, 23-Jul-2021)

Ref Expression
Assertion brers A V R Ers A R EqvRels R DomainQss A

Proof

Step Hyp Ref Expression
1 df-ers Ers = DomainQss EqvRels
2 1 eqres A V R Ers A R EqvRels R DomainQss A