Metamath Proof Explorer


Theorem brers

Description: Binary equivalence relation with natural domain, see the comment of df-ers . (Contributed by Peter Mazsa, 23-Jul-2021)

Ref Expression
Assertion brers ( 𝐴𝑉 → ( 𝑅 Ers 𝐴 ↔ ( 𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 df-ers Ers = ( DomainQss ↾ EqvRels )
2 1 eqres ( 𝐴𝑉 → ( 𝑅 Ers 𝐴 ↔ ( 𝑅 ∈ EqvRels ∧ 𝑅 DomainQss 𝐴 ) ) )