Description: Binary equivalence relation with natural domain, see the comment of df-ers . (Contributed by Peter Mazsa, 23-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | brers | |- ( A e. V -> ( R Ers A <-> ( R e. EqvRels /\ R DomainQss A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ers | |- Ers = ( DomainQss |` EqvRels ) |
|
2 | 1 | eqres | |- ( A e. V -> ( R Ers A <-> ( R e. EqvRels /\ R DomainQss A ) ) ) |