Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Equivalence relations on domain quotients
df-members
Metamath Proof Explorer
Description: Define the class of membership equivalence relations on their domain
quotients. (Contributed by Peter Mazsa , 28-Nov-2022) (Revised by Peter
Mazsa , 24-Jul-2023)
Ref
Expression
Assertion
df-members
⊢ MembErs = { 𝑎 ∣ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎 }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cmembers
⊢ MembErs
1
va
⊢ 𝑎
2
cep
⊢ E
3
2
ccnv
⊢ ◡ E
4
1
cv
⊢ 𝑎
5
3 4
cres
⊢ ( ◡ E ↾ 𝑎 )
6
5
ccoss
⊢ ≀ ( ◡ E ↾ 𝑎 )
7
cers
⊢ Ers
8
6 4 7
wbr
⊢ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎
9
8 1
cab
⊢ { 𝑎 ∣ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎 }
10
0 9
wceq
⊢ MembErs = { 𝑎 ∣ ≀ ( ◡ E ↾ 𝑎 ) Ers 𝑎 }