Metamath Proof Explorer


Definition df-members

Description: Define the class of membership equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022) (Revised by Peter Mazsa, 24-Jul-2023)

Ref Expression
Assertion df-members MembErs = { 𝑎 ∣ ≀ ( E ↾ 𝑎 ) Ers 𝑎 }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmembers MembErs
1 va 𝑎
2 cep E
3 2 ccnv E
4 1 cv 𝑎
5 3 4 cres ( E ↾ 𝑎 )
6 5 ccoss ≀ ( E ↾ 𝑎 )
7 cers Ers
8 6 4 7 wbr ≀ ( E ↾ 𝑎 ) Ers 𝑎
9 8 1 cab { 𝑎 ∣ ≀ ( E ↾ 𝑎 ) Ers 𝑎 }
10 0 9 wceq MembErs = { 𝑎 ∣ ≀ ( E ↾ 𝑎 ) Ers 𝑎 }