Description: Define the class of membership equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022) (Revised by Peter Mazsa, 24-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | df-members | |- MembErs = { a | ,~ ( `' _E |` a ) Ers a } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cmembers | |- MembErs |
|
1 | va | |- a |
|
2 | cep | |- _E |
|
3 | 2 | ccnv | |- `' _E |
4 | 1 | cv | |- a |
5 | 3 4 | cres | |- ( `' _E |` a ) |
6 | 5 | ccoss | |- ,~ ( `' _E |` a ) |
7 | cers | |- Ers |
|
8 | 6 4 7 | wbr | |- ,~ ( `' _E |` a ) Ers a |
9 | 8 1 | cab | |- { a | ,~ ( `' _E |` a ) Ers a } |
10 | 0 9 | wceq | |- MembErs = { a | ,~ ( `' _E |` a ) Ers a } |