Metamath Proof Explorer


Definition df-members

Description: Define the class of membership equivalence relations on their domain quotients. (Contributed by Peter Mazsa, 28-Nov-2022) (Revised by Peter Mazsa, 24-Jul-2023)

Ref Expression
Assertion df-members
|- MembErs = { a | ,~ ( `' _E |` a ) Ers a }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmembers
 |-  MembErs
1 va
 |-  a
2 cep
 |-  _E
3 2 ccnv
 |-  `' _E
4 1 cv
 |-  a
5 3 4 cres
 |-  ( `' _E |` a )
6 5 ccoss
 |-  ,~ ( `' _E |` a )
7 cers
 |-  Ers
8 6 4 7 wbr
 |-  ,~ ( `' _E |` a ) Ers a
9 8 1 cab
 |-  { a | ,~ ( `' _E |` a ) Ers a }
10 0 9 wceq
 |-  MembErs = { a | ,~ ( `' _E |` a ) Ers a }