Metamath Proof Explorer


Theorem dfpart2

Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfpart2 R Part A Disj R dom R / R = A

Proof

Step Hyp Ref Expression
1 df-part R Part A Disj R R DomainQs A
2 df-dmqs R DomainQs A dom R / R = A
3 2 anbi2i Disj R R DomainQs A Disj R dom R / R = A
4 1 3 bitri R Part A Disj R dom R / R = A