Metamath Proof Explorer


Theorem dfpart2

Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion dfpart2 ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 df-part ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴 ) )
2 df-dmqs ( 𝑅 DomainQs 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 )
3 2 anbi2i ( ( Disj 𝑅𝑅 DomainQs 𝐴 ) ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
4 1 3 bitri ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )