Description: Alternate definition of the partition predicate. (Contributed by Peter Mazsa, 5-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpart2 | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-part | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ) | |
2 | df-dmqs | ⊢ ( 𝑅 DomainQs 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) | |
3 | 2 | anbi2i | ⊢ ( ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
4 | 1 3 | bitri | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |