Metamath Proof Explorer


Definition df-part

Description: Define the partition predicate (read: A is a partition by R ). Alternative definition is dfpart2 . The binary partition and the partition predicate are the same if A and R are sets, cf. brpartspart . (Contributed by Peter Mazsa, 12-Aug-2021)

Ref Expression
Assertion df-part ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 cA 𝐴
2 1 0 wpart 𝑅 Part 𝐴
3 0 wdisjALTV Disj 𝑅
4 1 0 wdmqs 𝑅 DomainQs 𝐴
5 3 4 wa ( Disj 𝑅𝑅 DomainQs 𝐴 )
6 2 5 wb ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴 ) )