Metamath Proof Explorer


Definition df-part

Description: Define the partition predicate (read: A is a partition by R ). Alternative definition is dfpart2 . The binary partition and the partition predicate are the same if A and R are sets, cf. brpartspart . (Contributed by Peter Mazsa, 12-Aug-2021)

Ref Expression
Assertion df-part
|- ( R Part A <-> ( Disj R /\ R DomainQs A ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR
 |-  R
1 cA
 |-  A
2 1 0 wpart
 |-  R Part A
3 0 wdisjALTV
 |-  Disj R
4 1 0 wdmqs
 |-  R DomainQs A
5 3 4 wa
 |-  ( Disj R /\ R DomainQs A )
6 2 5 wb
 |-  ( R Part A <-> ( Disj R /\ R DomainQs A ) )