Metamath Proof Explorer


Theorem brpartspart

Description: Binary partition and the partition predicate are the same if A and R are sets. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion brpartspart
|- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> R Part A ) )

Proof

Step Hyp Ref Expression
1 eldisjsdisj
 |-  ( R e. W -> ( R e. Disjs <-> Disj R ) )
2 1 adantl
 |-  ( ( A e. V /\ R e. W ) -> ( R e. Disjs <-> Disj R ) )
3 brdmqssqs
 |-  ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> R DomainQs A ) )
4 2 3 anbi12d
 |-  ( ( A e. V /\ R e. W ) -> ( ( R e. Disjs /\ R DomainQss A ) <-> ( Disj R /\ R DomainQs A ) ) )
5 brparts
 |-  ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) )
6 5 adantr
 |-  ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) )
7 df-part
 |-  ( R Part A <-> ( Disj R /\ R DomainQs A ) )
8 7 a1i
 |-  ( ( A e. V /\ R e. W ) -> ( R Part A <-> ( Disj R /\ R DomainQs A ) ) )
9 4 6 8 3bitr4d
 |-  ( ( A e. V /\ R e. W ) -> ( R Parts A <-> R Part A ) )