Step |
Hyp |
Ref |
Expression |
1 |
|
eldisjsdisj |
|- ( R e. W -> ( R e. Disjs <-> Disj R ) ) |
2 |
1
|
adantl |
|- ( ( A e. V /\ R e. W ) -> ( R e. Disjs <-> Disj R ) ) |
3 |
|
brdmqssqs |
|- ( ( A e. V /\ R e. W ) -> ( R DomainQss A <-> R DomainQs A ) ) |
4 |
2 3
|
anbi12d |
|- ( ( A e. V /\ R e. W ) -> ( ( R e. Disjs /\ R DomainQss A ) <-> ( Disj R /\ R DomainQs A ) ) ) |
5 |
|
brparts |
|- ( A e. V -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) |
6 |
5
|
adantr |
|- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> ( R e. Disjs /\ R DomainQss A ) ) ) |
7 |
|
df-part |
|- ( R Part A <-> ( Disj R /\ R DomainQs A ) ) |
8 |
7
|
a1i |
|- ( ( A e. V /\ R e. W ) -> ( R Part A <-> ( Disj R /\ R DomainQs A ) ) ) |
9 |
4 6 8
|
3bitr4d |
|- ( ( A e. V /\ R e. W ) -> ( R Parts A <-> R Part A ) ) |